Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We consider stellar interferometry in the continuous-variable (CV) quantum information formalism and use the quantum Fisher information (QFI) to characterize the performance of three key strategies: direct interferometry (DI), local heterodyne measurement, and a CV teleportation-based strategy. In the lossless regime, we show that a squeezing parameter of đ â 2 (18 dB) is required to reach âŒ95% of the QFI achievable with DI; such a squeezing level is beyond what has been achieved experimentally. In the low-loss regime, the CV teleportation strategy becomes inferior to DI, and the performance gap widens as loss increases. Curiously, in the high-loss regime, a small region of loss exists where the CV teleportation strategy slightly outperforms both DI and local heterodyne, representing a transition in the optimal strategy. We describe this advantage as limited because it occurs for a small region of loss, and the magnitude of the advantage is also small. We argue that practical difficulties further impede achieving any quantum advantage, limiting the merits of a CV teleportation-based strategy for stellar interferometry.more » « less
-
Shi, Haitao (Ed.)Avocados are an important economic crop of Hawaii, contributing to approximately 3% of all avocados grown in the United States. To export Hawaii-grown avocados, growers must follow strict United States Department of Agriculture Animal and Plant Health Inspection Service (USDA-APHIS) regulations. Currently, only the Sharwil variety can be exported relying on a systems approach, which allows fruit to be exported without quarantine treatment; treatments that can negatively impact the quality of avocados. However, for the systems approach to be applied, Hawaii avocado growers must positively identify the avocados variety as Sharwil with APHIS prior to export. Currently, variety identification relies on physical characteristics, which can be erroneous and subjective, and has been disputed by growers. Once the fruit is harvested, variety identification is difficult. While molecular markers can be used through DNA extraction from the skin, the process leaves the fruit unmarketable. This study evaluated the feasibility of using near-infrared spectroscopy to non-destructively discriminate between different Hawaii-grown avocado varieties, such as Sharwil, Beshore, and Yamagata, Nishikawa, and Greengold, and to positively identify Sharwil from the other varieties mentioned above. The classifiers built using a bench-top system achieved 95% total classification rates for both discriminating the varieties from one another and positively identifying Sharwil while the classifier built using a handheld spectrometer achieved 96% and 96.7% total classification rates for discriminating the varieties from one another and positively identifying Sharwil, respectively. Results from chemometric methods and chemical analysis suggested that water and lipid were key contributors to the performance of classifiers. The positive results demonstrate the feasibility of NIR spectroscopy for discriminating different avocado varieties as well as authenticating Sharwil. To develop robust and stable models for the growers, distributors, and regulators in Hawaii, more varieties and additional seasons should continue to be added.more » « less
-
Abstract. The Marine Ice SheetâOcean Model Intercomparison Project â phase 2 (MISOMIP2) is a natural progression of previous and ongoing model intercomparison exercises that have focused on the simulation of ice-sheet and ocean processes in Antarctica. The previous exercises motivate the move towards realistic configurations, as well as more diverse model parameters and resolutions. The main objective of MISOMIP2 is to investigate the performance of existing ocean and coupled ice-sheetâocean models in a range of Antarctic environments through comparisons to observational data. We will assess the status of ice-sheetâocean modelling as a community and identify common characteristics of models that are best able to capture observed features. As models are highly tuned based on present-day data, we will also compare their sensitivity to prescribed abrupt atmospheric perturbations leading to either very warm or slightly warmer ocean conditions compared to the present day. The approach of MISOMIP2 is to welcome contributions of models as they are, including global and regional configurations, but we request standardized variables and common grids for the outputs. We target the analysis at two specific regions, the Amundsen Sea and the Weddell Sea, since they describe two different ocean environments and have been relatively well observed compared to other areas of Antarctica. An observational âMIPkitâ synthesizing existing ocean and ice-sheet observations for a common period is provided to evaluate ocean and ice-sheet models in these two regions.more » « less
-
Porcine reproductive and respiratory syndrome virus (PRRSV) remains widely distributed across the U.S. swine industry. Between-farm movements of animals and transportation vehicles, along with local transmission are the primary routes by which PRRSV is spread. Given the farm-to-farm proximity in high pig production areas, local transmission is an important pathway in the spread of PRRSV; however, there is limited understanding of the role local transmission plays in the dissemination of PRRSV, specifically, the distance at which there is increased risk for transmission from infected to susceptible farms. We used a spatial and spatiotemporal kernel density approach to estimate PRRSV relative risk and utilized a Bayesian spatiotemporal hierarchical model to assess the effects of environmental variables, between-farm movement data and on-farm biosecurity features on PRRSV outbreaks. The maximum spatial distance calculated through the kernel density approach was 15.3 km in 2018, 17.6 km in 2019, and 18 km in 2020. Spatiotemporal analysis revealed greater variability throughout the study period, with significant differences between the different farm types. We found that downstream farms (i.e., finisher and nursery farms) were located in areas of significant-high relative risk of PRRSV. Factors associated with PRRSV outbreaks were farms with higher number of access points to barns, higher numbers of outgoing movements of pigs, and higher number of days where temperatures were between 4°C and 10°C. Results obtained from this study may be used to guide the reinforcement of biosecurity and surveillance strategies to farms and areas within the distance threshold of PRRSV positive farms.more » « less
-
On the causes, consequences, and avoidance of PCR duplicates: Towards a theory of library complexityAbstract Library preparation protocols for most sequencing technologies involve PCR amplification of the template DNA, which open the possibility that a given template DNA molecule is sequenced multiple times. Reads arising from this phenomenon, known as PCR duplicates, inflate the cost of sequencing and can jeopardize the reliability of affected experiments. Despite the pervasiveness of this artefact, our understanding of its causes and of its impact on downstream statistical analyses remains essentially empirical. Here, we develop a general quantitative model of amplification distortions in sequencing data sets, which we leverage to investigate the factors controlling the occurrence of PCR duplicates. We show that the PCR duplicate rate is determined primarily by the ratio between library complexity and sequencing depth, and that amplification noise (including in its dependence on the number of PCR cycles) only plays a secondary role for this artefact. We confirm our predictions using new and published RADâseq libraries and provide a method to estimate library complexity and amplification noise in any data set containing PCR duplicates. We discuss how amplificationârelated artefacts impact downstream analyses, and in particular genotyping accuracy. The proposed framework unites the numerous observations made on PCR duplicates and will be useful to experimenters of all sequencing technologies where DNA availability is a concern.more » « less
-
We present an algorithm to reliably generate various quantum states critical to quantum error correction and universal continuous-variable (CV) quantum computing, such as Schrödinger cat states and Gottesman-Kitaev-Preskill (GKP) grid states, out of Gaussian CV cluster states. Our algorithm is based on the Photon-counting-Assisted Node-Teleportation Method (PhANTM), which uses standard Gaussian information processing on the cluster state with the only addition of local photon-number-resolving measurements. We show that PhANTM can apply polynomial gates and embed cat states within the cluster. This method stabilizes cat states against Gaussian noise and perpetuates non-Gaussianity within the cluster. We show that existing protocols for breeding cat states can be embedded into cluster state processing using PhANTM.more » « less
An official website of the United States government

Full Text Available